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Abstract. The increasing demand for wind energy offshore requires more hub-height relevant wind information while larger

wind turbine sizes require measurements at greater heights. In situ measurements are harder to acquire at higher atmospheric

levels; meanwhile the emergence of machine-learning applications has led to several studies demonstrating the improvement in

accuracy for vertical wind extrapolation over conventional power-law and logarithmic profile methods. Satellite wind retrievals

supply multiple daily wind observations offshore, however only at 10 m height. The goal of this study is to develop and validate5

novel machine-learning methods using satellite wind observations and near-surface atmospheric measurements to extrapolate

wind speeds to higher heights. A machine-learning model is trained on 12 years of collocated offshore wind measurements from

a meteorological mast (FINO3) and space-bourne wind observations from the Advanced Scatterometer (ASCAT). The model

is extended vertically to predict the FINO3 vertical wind profile. Horizontally, it is validated against the NORA3 meso-scale

model reanalysis data. In both cases the model slightly over-predicts the wind speed with differences of 0.25 and 0.40 m s−110

respectively. An important feature in the model training process is the air-sea temperature difference, thus satellite sea surface

temperature observations were included in the horizontal extension of the model, resulting in 0.20 m s−1 differences with

NORA3. A limiting factor when training machine-learning models with satellite observations is the small finite number of

daily samples at discrete times; this can skew the training process to higher/lower wind speed predictions depending on the

average wind speed at the satellite observational times. Nonetheless, results shown in this study demonstrate the applicability15

of using machine learning techniques to extrapolate long-term satellite wind observations when enough samples are available.

1 Introduction

Wind observations at heights relevant for the operation of modern offshore wind farms, i.e. 100 m and more, are required to

optimize their positioning and layout. Direct measurements offshore, especially in deep water locations, are costly and thus,20

only available for limited time periods. Traditionally, meteorological masts (met. masts) are used to characterize the ambient
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wind speeds, however with the increasing size of wind turbines and water depths these become more expensive to install

(MacAskill and Mitchell, 2013).

Wind lidars can measure the line of sight wind speed at distances from a few centimeters to several kilometers on land,

floating buoys or ferries at sea or in orbit on satellites (Clifton et al., 2018). Floating lidar systems can act as a substitute to met25

masts, as they are able to measure wind profiles from near the ocean surface and up to 275 m with high sampling frequency.

However many of the existing floating lidar system datasets are privately owned or of shorter time periods not suitable to

characterize the inner-annual wind variations (Gottschall et al., 2017).

Numerical models provide wind simulations over long time periods and at many levels in an area of interest. For wind

energy applications, such simulations do not always accurately reproduce the actual wind variability. Additionally, the errors30

associated with simulated winds from numerical models are not accurately characterised, mainly due to the sparsity of offshore

wind data (Hahmann et al., 2015). This adds uncertainty to wind resource mapping with larger errors found at more complex

offshore sites (Peña et al., 2011).

Satellite wind retrievals provide observations of the wind field over large spatial domains and extensive time periods yet their

temporal resolution, e.g. up to a few times per day at best, is limited compared to model simulations and in situ measurements.35

Synthetic Aperture Radar (SAR) and scatterometer wind measurements have been used to characterize offshore wind resources

(Karagali et al., 2018a; Remmers et al., 2019; Hasager et al., 2020; Ahsbahs et al., 2020). ASCAT scatterometer winds were

compared to numerical model simulations(Karagali et al., 2018b) and ferry lidar measurements showing better agreement

than the meso-scale model simulations (Hatfield et al., 2022). ASCAT winds are optimized for consistent wind measurement

accuracy (Verhoef et al., 2017), stability (Rivas et al., 2017) and bias (Belmonte Rivas and Stoffelen, 2019). Nevertheless,40

satellite wind observations are representative at the 10m height which is not directly applicable for wind energy purposes

at hub heights. Badger et al. (2016); Hasager et al. (2020) extrapolated surface winds to higher atmospheric levels over the

European seas using the long-term stability correction from Kelly and Gryning (2010); results were promising when compared

to in situ wind measurements offshore.

Machine learning is a novel method for predict wind speeds at different heights from in situ measurements onshore (Türkan45

et al., 2016; Mohandes and Rehman, 2018; Vassallo et al., 2020; Bodini and Optis, 2020) and offshore (Vassallo et al., 2020;

Optis et al., 2021). Türkan et al. (2016) compared seven different machine-learning algorithms predicting 30 m wind speeds

from 10 m wind speed data with Root-Mean-Square-Errors (RMSE) ranging from 0.2 m s−1 to 0.9 m s−1, reporting the

RandomForest and Multilayer Perceptron as the best performing ones. Mohandes and Rehman (2018) used a Deep Neutral

Network to extrapolate wind lidar data, providing better estimates than classical non machine learning methods with improve-50

ment on the power-law predictions of up to 15% at 100 m heights. Vassallo et al. (2020) used an Artificial Neural Network

to extrapolate wind speeds over a variety of terrains, improving accuracy by up to 65% and 53% compared to the logarithmic

profile and power law methods, respectively. The machine-learning approach was used by Optis et al. (2021) to extrapolate off-

shore floating lidar wind speed measurements, demonstrating improved performance compared to Weather Weather Research

& Forecasting Model (WRF) model data, logarithmic profile methods, single column model data and the extrapolation method55
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of Badger et al. (2016). de Montera et al. (2022) used machine learning techniques to improve bias on SAR wind retrievals and

to extrapolate the resultant SAR winds to hub heights to obtain wind power maps around the training area.

Although results from Mohandes and Rehman (2018); Vassallo et al. (2020) showed better performance of the machine

learning models compared to the conventional methods of profile extrapolation, these studies were assessed at the sites where

the model training took place. A "round-robin" approach to properly validate the machine-learning based vertical extrapolation60

was suggested by Bodini and Optis (2020); this involves training the model at the given site of interest and assessing it at other

sites, some distance away from the original location. Bodini and Optis (2020) reported an increase in Mean Absolute Error

(MAE) by 10%-15% at distances of 50-100 km, stating that the machine-learning based approach outperformed the classical

extrapolation methods in all atmospheric stability conditions.

The aim of this study is to assess the potential of using machine learning models with two-dimensional wind field observa-65

tions at lower atmospheric levels in order to predict the wind at great heights. More specifically, ASCAT ocean surface wind

retrievals are extrapolated using a machine-learning model to higher atmospheric levels, directly relevant for wind energy ap-

plications. Sensitivity analyses on the input data used for training the model are performed and special attention is given to the

impact of input data sampling frequency to the training model performance. Finally, following the "round-robin" approach, this

study also aims at spatially assessing the performance of the machine learning methods, i.e. to a nearby met mast and around70

an area surrounding the training site.

Section 2 describes the data sets, study area and machine-learning model. Section 3 describes the model training process at

three sites and with prediction of mean wind profiles at one site, including outcomes of the round-robin approach for validation.

Discussions on the findings and conclusions are available in sections 4 and 5, respectively.
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2 Data and Methods75

2.1 ASCAT

The Advanced Scatterometer (ASCAT) is an instrument on the Meteorological Operational (MetOp) satellites, operated by

the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) (Verhoef and Stoffelen, 2019).

ASCAT was launched subsequently on Metop-A in October 2006, Metop-B in September 2012 and Metop-C in November

2018. ASCAT is a real aperture radar operated in the C-band (5.255 GHz) consisting of two sets of three vertically polarised80

antennas separated by 45◦. These beams measure a 550-km swath with a 700-km nadir gap, where each swath is divided into

41 Wind Vector Cells (WVCs) covering a 12.5-km grid of the sea surface. As backscatter increases with increasing sea surface

roughness (Stoffelen, 1996), in each WVC the backscattered power from the observed area is used to estimate the normalized

radar cross section (NRCS, σ0) (Martin, 2014). The NRCS is the relation between the received and transmitted power which

is dependent on the radar settings, the atmospheric attenuation and the ocean surface characteristics (Chelton et al., 2001). A85

geophysical model function (GMF), i.e. an empirically derived function based on the local measurement geometry, relates the

mean wind vector in a WVC to the NRCS (Stoffelen et al., 2017; de Kloe et al., 2017; Vogelzang et al., 2017).

ASCAT products include wind speed and direction at 10 m above the sea surface and for the purpose of the present study the

Near-Real-Time (NRT) 12.5-km wind product (from 2010–2015 WIND_GLO_WIND_L3_REP_OBSERVATIONS_012_005

from 2007–2015 and WIND_GLO_WIND_L3_NRT_OBSERVATIONS_012_002 from 2016 onwards) was used from January90

1, 2010 to December 31, 2021. This 12.5 km product has a standard deviation of 1.7 m s−1 and a bias of 0.02 m s−1 (Verhoef

and Stoffelen, 2019). Data are produced by the Royal Netherlands Meteorological Institute (KNMI) for and are distributed by

the Copernicus Marine Service (https://marine.copernicus.eu). For the area of interest, ASCAT provides a measurement 94%

of the total time period. There are from 1 to 5 observations daily with a higher frequency of observations in the latter half of

the time period due to the coverage of all three MetOp satellites although MetOp-A was decommissioned on November 30,95

2021.

2.2 FINO meteorological masts

The German Forschungsplattformen In Nordund Ostsee (FINO) project began in the early 2000s (fino.bsh.de), with the instal-

lation of offshore met masts in the North and Baltic Seas to study the wind climate over long time scales (Leiding et al., 2016).

Meteorological parameters are recorded at frequencies of 1-10 Hz, and averaged in intervals of 10-30 min. Observations were100

used during the period 1 January 2010 to 31 December 2021. Details on the masts are available in Table 1 and are shown in

Figure 1.

FINO1 is situated in the North Sea approximately 45 km to the north of Borkum, Germany and in the immediate vicinity

of the wind farms Alpha Ventus and Borkum Riffgrund. The average wind speed is 9.9 m s−1 from 2010 to 2021 at 91 m

with a south-westerly prevailing wind. All measurements are available over 90% of the period of interest, except the water105

temperature (WT) with 84% availability.
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Table 1. Characteristics of FINO masts with the heights of available measurements for various meteorological and oceanographic parameters.

FINO1 FINO2 FINO3

Latitude° 54.01 55.01 55.20

Longitude° 06.58 13.15 07.15

Bathymetry (m) 30 35 25

Wind Speed (m) 34, 41:10:91 32:10:102 31:10:101, 107

Wind Dir (m) 34, 50, 70, 90 31, 51, 71, 91 29, 101

Air Pressure (m) 21 30 23

Air Temperature (m) 34 30 29

Relative Humidity (m) 34 30 29

Sea Surface Temperature (m) -2 -2 -2

FINO2 is located in the Baltic Sea, within 3 km north of the EnBW Baltic 2 wind farm and 33 km north of the Rügen island.

The average wind speed is 9.6 m s−1 at 102 m with a south-westerly prevailing wind. All relevant measured variables are

available 90% of the 12-year period of interest with the exception of WT with 64% data availability.

FINO3 is located in the North Sea to the west of the DanTysk wind farm, 70km from the island of Sylt. The average wind110

speed is 9.6 m s−1 at 107 m over the entire measurement period with a westerly prevailing wind. All measured quantities show

a data availability of 85% except WT (76%).

2.3 Satellite Sea Surface Temperature

Besides the water temperature measurements at the met mast locations, which are typically taken at some depth below the

surface and are representative of that specific location, space-borne infrared radiometers provide extensive spatial and temporal115

coverage of the actual sea surface temperature, i.e. SSTskin, which is typically converted to SSTsub−skin and is considered

representative of the few top millimeters of the water surface (Donlon et al., 2007). The Copernicus Marine Environment

Monitoring Service (CMEMS) releases a suite of level 4, gap-free products with regional and global coverage, representative

of the SST foundation temperature, i.e. the temperature free of diurnal warming or nocturnal cooling, typically at the base of

the sub-skin layer (Donlon et al., 2007). For the purposes of the present study, the Baltic Sea/North Sea SST (DMI level 4 (L4)120

SST) reprocessed L4 analysis was used; it is a gap-free satellite foundation SST analysis created by the Danish Meteorological

Institute (DMI) Optimal Interpolation (OI) system (Høyer and She, 2007). The product is available from 1st January 1982 to

31st May 2021 - it is being temporally extended at regular intervals - on a regular grid with 0.02° resolution. It provides an

estimate of the foundation SST with uncertainty estimates, which is the SST free of diurnal variability (Høyer and Karagali,

2016). See CMEMS (2022) for further details.125

Data are produced by the Danish Meteorological Institute (DMI) for and are distributed by the Copernicus Marine Service

(product ID SST-BAL-SST-L4-REP-OBSERVATIONS-010-016, https://resources.marine.copernicus.eu/). To diversify from
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Figure 1. Map of the study area with the FINO mast locations in the North and Baltic Seas (top). The black rectangles represent nearby

offshore wind farms. The bottom panels show close-ups for the met mast locations with black dots representing individual wind turbines.

the water temperature measurements available at each meteorological mast site, this product will be referred to as DMI L4 SST

for the remaining of this manuscript. For spatial matching with ASCAT and since the spatial resolution of the DMI L4 SST

product is 0.02°, a 3x3 grid of SST observations centered in the ASCAT WVC were averaged for each WVC and re-mapped130

to the ASCAT coordinates.

2.4 Simulated Wind Datasets

The NORwegian hindcast Archive (NORA3) is a re-analysis hindcast dataset with a 3-km spatial resolution, available from

1984 to 2021 for the Norwegian, the North and the Barents Sea. NORA3 is dynamically downscaled from the European Centre

for Medium-Range Weather Forecasts (ECMWF) ERA5 reanalysis (Hersbach et al., 2020), using the Numerical Weather Pre-135

diction (NWP) model HIRLAM–ALADIN Research on Mesoscale Operational NWP in Euromed—Applications of Research

6

https://doi.org/10.5194/wes-2022-101
Preprint. Discussion started: 9 November 2022
c© Author(s) 2022. CC BY 4.0 License.



to Operations at Mesoscale (HARMONIE-AROME). Three nested domains were used (18 km, 6 km and 2 km horizontal

resolution), with a model-integration time of 4 years (2004-2007), and a temporal resolution of 1 hour.

The New European Wind Atlas (NEWA) dataset, like NORA3, has a 3-km spatial resolution and is derived from ERA5

reanalysis (Hersbach et al., 2020), however it is down-scaled using the WRF model with no data assimilation (Hahmann et al.,140

2020; Dörenkämper et al., 2020).

For the purpose of this work, only the year 2018 was considered for comparisons due to the concurrent availability of ASCAT

and the New European Wind Atlas (NEWA) dataset (Witha et al., 2019). Due to the different spatial resolution of NORA3 and

ASCAT, NORA3 was re-sampled according to the ASCAT grid; for a given ASCAT WVC, a 3x3 grid of NORA3 grid points

centered around that ASCAT WVC was averaged and remapped to the ASCAT coordinates.145

2.5 Random Forest Model

A simple ensemble-based regression tree method known as a random forest model (Breiman, 2001; Hastie et al., 2009) was used

in the present study for wind speed extrapolation. A random forest is a collection of decision trees which are trained on random

subsets of a training dataset. From the input data, the algorithm generates a forest of N trees {T1(X),T2(X), ...,TN (X)} using

a k dimensional vector input X = {x1,x2, ...,xk} and a target dataset Y = {y1,y2, ...,yk}. These N independent trees predict150

a final value which is then averaged across all trees: y = 1
N

∑N
n=1 Tn(x) where x is a sample in the testing set and y is the final

value. The RandomForestRegressor module in Python’s scikit-learn package (Pedregosa et al., 2011), previously used

for wind extrapolation in Bodini and Optis (2020); Optis et al. (2021), was implemented for this study.

Water and air temperature, relative humidity and air pressure measurements, averaged every 30 minutes, from each of the

three FINO met masts were used as input data for the model training along with instantaneous wind speed, cosine of wind155

direction, time of day and month from ASCAT (see Table 2). The associated number of concurrent samples, i.e. match-ups, are

shown in Table 3. The fewer samples for the FINO2 mast are associated to the later starting date of WT measurements (2013),

resulting in a shorter training period compared to the other two masts, i.e. 7 years for FINO2, 11 years for FINO3 and 14 years

for FINO1.

While model parameters are "learned" during the training phase, hyper-parameters are set before the training to create a more160

accurate algorithm. Hyper-parameter tuning relies on experimental results of combinations of model parameters to evaluate

the performance of each model. To avoid over-fitting the model, the K-Fold cross-validation method is applied. The data is

split into testing and training sets which is split further into five subsets, K. The model is trained iteratively K times, evaluating

on the K-th fold, changing on each iteration. The hyper-parameters allowed to vary and their associated ranges are outlined in

Table. 4. This procedure is repeated for each of the FINO masts.165
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Table 2. Input features and heights used to train the random forest model at the FINO met masts.

Source Input feature Acronym FINO1 heights [m] FINO2 heights [m] FINO3 heights [m]

FINO Air Pressure [hPa] AP 21 30 23

Air Temperature [◦C] AT 34 30 29

Relative Humidity [%] RH 34 30 29

FINO Water Temperature [◦C] WT 0.5 0.5 0.5

Air-Sea temperature difference [◦C] AT - SST (WT) - - -

DMI L4 SST Sea Surface Temperature [◦C] SST 0 0 0

ASCAT Wind Speed [ m s−1] WS 10 10 10

Cosine of Wind Direction [◦] WD 10 10 10

Time of day (hour) H - - -

Month M - - -

Table 3. Total number of samples used in the random forest model training from each FINO mast.

Total data Concurrent data with ASCAT Data used in model training Data used for validation Period of data availability

FINO1 157129 6177 4942 1235 2007-01-01 to 2021-07-31

FINO2 121774 4618 3694 924 2013-04-17 to 2020-11-06

FINO3 137577 5739 4592 1147 2010-01-22 to 2021-07-31

Table 4. Hyperparameter input range for model cross-validation.

Hyperparameter Value range

Number of estimators 50-1000

Minimum number of samples per split 2-10

Minimum number of samples per leaf 1-10

Maximum number of features per tree 1-9

Maximum depth 5-30
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Table 5. Metrics of the random forest model (ML) and NEWA WRF dataset, compared to the wind measurement at the height nearest to

100 m at each of the FINO met masts. Random forest models were trained at each of the FINO met masts using the lowest atmospheric

variable measurements available at each height. Results in bold represent the best results for each evaluation metric.

Height [m] N R2 RMSE [ m s−1] MAE [ m s−1] bias

NEWA at FINO1 100 49830 0.65 2.39 1.78 0.075

ML at FINO1 91 6180 0.82 1.90 1.40 0.010

NEWA at FINO2 100 50013 0.65 2.32 1.76 0.040

ML at FINO2 102 4618 0.78 1.83 1.37 -0.009

NEWA at FINO3 100 51463 0.77 1.93 1.41 0.003

ML at FINO3 101 5739 0.93 1.23 0.90 -0.004

3 Results

3.1 Site selection for random forest model training

The random forest model was parameterized and trained at each of the three FINO sites, in the North and Baltic Seas. Table

5 shows the metrics of the predicted wind speeds at the highest available heights of each mast: 91 m at FINO1, 102 m at

FINO2 and 107 m at FINO3. The models trained at FINO1 and FINO2 have an RMSE ∼1.8 m s−1 whereas for FINO3 the170

RMSE is lower, i.e. ∼1.2 m s−1. The model trained at FINO3 also has the lowest Mean Absolute Error (MAE) as well as the

highest coefficient of determination (0.93). At all sites, biases were negligible with the lowest value from the machine-learning

output of =0.004 at FINO3. Not that the biases were calculated with respect to the met masts i.e., (Upred−Umast)/Umast

The NEWA dataset also has lowest RMSE, MAE, bias as well as the highest coefficient of determination at the FINO3 site

compared to the other two. The machine-learning model shows lower RMSE and MAE compared to the NEWA dataset at all175

FINO sites.

Feature importance for the random forest model is calculated based on the increase or decrease in error when permuting

over the value of a particular feature. If permuting the values causes a large change in the mean square error (MSE), the feature

is an important training criterion for the model. The left panel of Figure 2 shows the contributions of various input features to

the mean model accuracy, with a decrease over the training period for the FINO3 dataset. As expected, the ASCAT 10 m wind180

speed is the most important feature while contributions from the other input variables are small to negligible. This behaviour

is consistent for the training process at all sites, with the air-sea temperature difference consistently being the second most

important training feature. Nonetheless, including the air-sea temperature difference as a feature reduces the overall RMSE by

around 20% at all sites. The right panel of Figure 2 shows statistics of the predictions at a height of 107 m. Training the dataset

at lower heights results in an overall lower RMSE and a higher contribution from the lower atmospheric variables in terms of185

feature importance, i.e. the air pressure shows higher contribution to the training for heights up to 80 m (not shown).

In summary, the model training procedure repeated at the three FINO sites showed best statistics at FINO3 (Table 5); there,

less wind farms exist in the vicinity of the meteorological mast compared to the other two sites (Figure 1) and the highest data
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a) b)

Figure 2. a) Mean accuracy decrease of the mean square error contribution from the training variables. The small vertical black bars represent

the standard deviation of the mean training dataset. b) Scatter plot of the predicted ASCAT 107m wind speed (y-axis) versus FINO3 107m

wind speed measurements (x-axis), based on the 20% validation dataset not used in the model training process.

availability of wind speed measurements is recorded. For these reasons, focus is given only on this site for the remainder of

this study.190

3.2 Wind profiles reconstruction

The random-forest model (RFM) was used to reproduce the mean wind profile at FINO3, shown in the left panel of Figure

3, along with that derived from measurements on site. The observed wind profile (red dots) shows very low shear, increasing

from 8.7 to 9.7 m s−1 between 31 m and 107 m. The RFM (black line) performs very well at predicting the mean wind profile.

The right panel of Figure 3 shows the mean wind speed residuals, i.e. the difference between the RFM wind profile minus the195

observed one, at each height. At lower heights, from 31 m to 51 m, the model reproduces the wind speeds with a slight over-

estimation of just over 0.03 m s−1 while residuals marginally increase at higher heights indicating a slight over-estimation of

the wind profile derived from the RFM. Overall the RFM could reproduce the collocated wind profile at FINO3 with overall

very low residuals and slight deviations at higher heights.

3.3 Round robin approach at FINO1 & FINO3200

The round robin approach used here aimed at applying the RFM trained at FINO3 to estimate the mean wind speed at FINO1,

located 136 km away. Moreover, comparisons with the measurements at FINO1 were performed. For validation purposes, the

RFM was optimized through training at the 91 m height of FINO3 using the satellite-based DMI L4 SST product (see 2.3),

instead of the water temperature (WT) measured on site. This optimized RFM was extended to the location of FINO1, where

only the ASCAT wind speed/direction and the DMI L4 SST were substituted for the FINO1 site; all other model features, i.e.205

air temperature, pressure and relative humidity, were assumed to be static, retaining the values used at FINO3.
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Figure 3. 2010-2021 mean wind profile at FINO3 from the RFM (line) and the corresponding measurements as dots (left). Wind speed

difference between the RFM and the observations (right).

Table 6. Round robin model evaluation from FINO3 and FINO1 using the DMI L4 SST product and water temperature (WT) measurements

at each site.

Including DMI L4 SST Including water temperature at mast

FINO1 FINO3 FINO3 to FINO1 FINO1 to FINO3 FINO1 FINO3 FINO3 to FINO1 FINO1 to FINO3

RMSE [ m s−1] 1.803 1.196 1.949 1.822 1.898 1.226 2.019 1.878

MAE [ m s−1] 1.395 0.856 1.474 1.489 1.400 0.901 1.533 1.524

Bias -0.001 -0.007 0.077 -0.110 0.010 -0.003 0.081 -0.112

R2 0.84 0.93 0.84 0.84 0.82 0.93 0.86 0.86

N 4885 4446 2576 2576 6180 5739 2576 2576

The RFM-predicted wind speed was evaluated against the wind speeds measured at FINO1 at 91 m, see Table 6. While the

change in the bias is negligible, a 63% increase in RMSE is observed, which is however only 8% higher than the RMSE of the

model trained and optimized at FINO1 as seen in Table 6.

The procedure was repeated by training the RFM using WT measurements at FINO3 (instead of the DMI L4 SST product)210

and extending it to the FINO1 site using ASCAT wind speed and direction for FINO1 while WT and all other atmospheric

parameters remained the same as in the training process, i.e. as measured at FINO3. In this case, the RMSE of the extended

model increases by 65% or by 4% when WT measurements from the mast site are used, compared to the DMI L4 SST. In both

cases, a large increase of RMSE is seen when extending the model to the FINO1 location, although the increase in RMSE is

less when using the DMI L4 SST product.215
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Finally, the procedure was reversed, i.e. a model was trained using FINO1 measurements and extended to FINO3. This

was performed twice, i.e. with the DMI L4 SST product and in situ measured WT. A higher RMSE was found in both cases

compared to the model trained at FINO3, yet using the DMI L4 SST only increases the RMSE by 1%, with a larger associated

increase in bias. Including the DMI L4 SST product to the model extension improves the prediction RMSE by 2% (Table 6)

compared to using the measured WT. In this case, a lower RMSE is obtained in extending the model to FINO3 than the other220

way around, even showing a lower RMSE at FINO3 when including WT measurements.

3.4 Spatial extension of the model

To investigate the random-forest model performance when the extension is performed over an area around the training site

rather than at a single point some distance away, the RFM was trained and extended over an area using two approaches, i.e.

the WT measurements from FINO3 and the DMI L4 SST product at each WVC. Results were then compared to the NORA3225

reanalysis at each WVC.

3.4.1 Including in situ water temperature measurements

Initially, the RFM was extended over an area defined as 10 by 10 ASCAT wind vector cells (WVC) centered around FINO3.

This was performed using WT and all atmospheric variables measured at FINO3, assuming horizontal homogeneity offshore,

while ASCAT wind speed and direction values were used at each WVC.230

Figure 4a shows the 2018 mean annual wind field for the study area from the ASCAT 10 m winds, the RFM at 101 m (b)

and NORA3 100 m wind speeds (c). This year was selected due to the high availability of ASCAT (MetOp-A,B,C) and NEWA

data availability, as well as the low RMSE between the RFM and measurements at FINO3 (see Table 5).

A general increase in wind speed across the entire area can be observed from 10 m to 100 m, while the structure and features

of spatial variability in the wind field are not maintained. The range of RFM-predicted wind speeds across the study area varies235

by 0.5 m s−1, from 8.8 to 9.4 m s−1, while in the 10 m ASCAT wind field the speed ranges from 7.5 to 8.2 m s−1, i.e

0.7 m s−1. In the northeast part of the selected area, where the Horns Rev 2 & 3 wind farms are located, a smaller increase in

wind speed from 10 m to 100 m is observed compared to the surrounding areas. NORA3 shows higher variability of around

1 m s−1, from 9.0 to 10.0 m s−1 with lower winds speeds in the south-east area and higher winds in the north-west.

The wind speed difference between the RFM and NORA3 100 m mean winds is shown in Figure 4d. Wind speed differences240

of -0.5 m s−1 or larger indicate that the RFM under-predicts the mean wind field compared to NORA3, especially north of

the FINO3 location. The smallest wind speed difference occurs in the south-east part of the study area, coincidentally near the

HelWin wind farm. This agreement can be attributed to the lower wind speeds from NORA3 in this area and the relatively

constant wind speed predicted over the entire region.
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a) b)

c) d)

Figure 4. a) Mean ASCAT wind speed at 10 m for 2018 around FINO3. b) RFM-predicted mean wind speed at 101 m for 2018. c) Mean

NORA3 wind speeds at 100 m regridded to the ASCAT WVCs. d) Wind speed difference between b) and c). The wind farm locations in the

local surroundings are included in black.

3.4.2 Including the DMI L4 SST product245

To assess the impact of SST in the spatial extension of the RFM, unique values from the DMI L4 SST product were used

for each WVC along with the unique ASCAT wind speed and direction values while all other variables remained the same

throughout the area of study, i.e. the measurements from FINO3. Figure 5a shows the mean SST for 2018, the mean RFM

100 m wind field using varying SST is shown in Figure 5b while the difference between RFM and NORA3 is shown in Figure

5c. The RFM wind speeds are higher than what was found when water temperature measurements from the FINO3 site were250

used throughout the study area, see Figure 4b, however spatial variability ranges around ∼0.3 m s−1 across the entire region.

The difference between the RFM, using the DMI L4 SST product at each WVC, and NORA3 100 m winds (see Figure 5c)

indicates a significant change compared to what was found when the measured WT was used for the RFM (see Figure 4d).

The large negative differences on the north-west part of the domain are near-zero when the DMI L4 SST product is used in the
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a) b) c)

Figure 5. a) Mean SST for 2018 re-gridded to the ASCAT WVCs. b) RFM predicted wind field at 101 m with varying SST, c) Wind speed

difference between b) and the NORA3 mean wind field at 100 m shown in Figure 4c. The wind farm locations in the local surroundings are

included in black.

RFM, while areas that showed small negative biases in Figure 4d, e.g. south-east, show small positive differences of 0.3 m s−1255

indicating an over-prediction of the RFM wind speeds compared to NORA3. Contrary to what was shown in Figure 4d, the

highest predicted wind speeds, and consequently lowest differences with NORA3, occur in the north-west part of the study

area. The nearby wind farms are included in the plot, however there are no clear indications that they have any influence on the

predictions, suggesting their contributions are negligible in the ASCAT wind retrievals.

3.5 Data sampling characteristics260

The present study is based on training the RFM using discrete, instantaneous retrievals of wind speed and direction from

ASCAT rather than the typical 10 min measured time-series used in other studies (Vassallo et al., 2020; Bodini and Optis,

2020; Optis et al., 2021). In this section, the effect of discrete sampling on the RFM training is explored utilising the 12-year

long ASCAT observation period.

Figure 6 shows the number of collocated samples with the FINO3 met mast with each launch of the MetOp satellites. Since265

the launch of MetOp-B in 2012, a large increase into the number of samples is seen spanning the majority of the training time

period.

The number of available ASCAT observations at each WVC of the study area for the years 2010, 2018 and 2020 is shown

in Figure 7. A non-uniform pattern in data availability is observed, associated with the ascending and descending orbits of

the MetOp platforms. Note that MetOp-B was launched in 2012, MetOp-C in November of 2018, while MetOp-A was de-270

orbited in November 2021. Hence, Figure 7a only shows observations from one instrument, while in 2018 and 2020 (b, c) two

instruments were available, hence the higher range of data availability.

To examine the impact of the sample size, the RFM was trained over different temporal periods and using varying amounts

of randomly sampled subsets from the entire dataset. Figure 8a shows the RMSE (top) and bias (middle) between the RFM

and FINO3 wind speed measurements at 101 m, along with the number of samples (bottom) when training the RFM each year275

between 2010 and 2021 at the FINO3 site (black lines). Years were then ranked from lowest to highest RMSE for the 101 m

predicted wind speeds - found in 2012 and 2019, respectively. The evaluation metrics (RMSE and bias) were calculated for the
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Figure 6. Number of concurrent ASCAT observations with the launch of each MetOp satellites at the FINO3 location from 2010-2022.

a) b) c)

Figure 7. Number of available ASCAT observations at each WVC of the study area for (a) 2010, (b) 2018 and (c) 2020.

RFM trained on the best preforming year, the two best performing years, the three best, etc. The statistics, shown in Figure 8a,

begin to plateau towards a stable value of RMSE and a negligible bias after 4 years of training when the sample size is around

2500.280

The same procedure was then repeated for the RFM trained sequentially, i.e. only for 2010, for 2010-2011, 2010-2012 and

up to the whole period 2010-2021. The RMSE, bias and sample size shown in Figure 8a (gray lines), indicates that although

the bias converges around 4 years (or 2000 samples), the RMSE takes longer time to converge at around 6 years. Convergence

of the RMSE and bias towards stable values occurs after 4 (black lines) or 6 (grey lines) years and for just over 2500 samples.

In both instances in Figure 8a does the RMSE converge around the 4-year mark between 2000-2500 samples.285

Finally, the RFM was trained using random sub-samples of the full 12-year dataset instead of yearly sub-sets. The RMSE

and bias between the RFM trained using random sub-samples increasing in size and FINO3 wind speed observations at 101 m

are shown in Figure 8b. All metrics appear to be converging to a single value after a given amount of samples between 2500

and 3000 - although some metrics plateau around 2000 samples. Results presented here represent ten averaged instances of

training the RFM with increasing random samples.290
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a) b)

Figure 8. Metric evolution by an incremental number of samples used to train the RFM. a) Lowest RMSE individual years trained sequentially

(black lines) and sequential training by year from 2010-2021 (gray lines), b) Training averaged cumulative random samples of the total

dataset.

To investigate the impact of the sample size on the extrapolated wind speed and resulting wind profile, sub-sets of the 2018

dataset were used to estimate wind profiles shown in Figure 9a. Just as in Section 3.4, the RFM (red dashed line) over-predicts

wind speeds at higher heights compared to the FINO3 measurements collocated with the ASCAT observations (red dots). In

both cases, the average wind speeds are higher than those estimated from the entire FINO3 measurement period (2010-2021,

black crosses). This provides a possible explanation for the over-prediction of the RFM compared to NORA3 when trained on295

the subset of FINO3 data.

Figure 9b shows mean wind profiles from the RFM trained on 500 samples - around the same size as that of ASCAT in

2018 shown in Figure 9a, 2500 samples (c) and 5000 samples (d). The RFM (red dashed line) predicts higher winds speeds at

heights above 70 m compared to FINO3 measurements for the case of 500 samples (red dots), while both are higher than the

complete FINO3 dataset (black crosses). Nonetheless, when increasing the sample size to 2500 (c) and 5000 (d), agreement300

with the corresponding FINO3 measurements significantly improved. Finally, increasing the sample size from the converging

value of n=2500 to higher values, e.g. 5000, showed little to no change in the overall wind speed predictions.

Due to the sun-synchronous nature of the MetOp satellites, the FINO3 location is observed twice per day, in the morning

and evening. The number of ASCAT observations as a function of the time of day is shown in Figure 10 where dark grey bars

represent the entire period and grey bars only year 2018. The majority of ASCAT observations occur between 8:00-10:00 and305

19:00-21:00 with slight variations from 2018. Hourly averaged wind speed measurements from FINO3 at 107 m for the entire

period 2010-2021 are shown as a dark grey line while the light gray line represents only the 2018 hourly means. At the ASCAT

overpass times, i.e. 8:00-10:00 and 19:00-21:00, the collocated FINO3 mean wind speed tends to be higher than during the

rest of the day, more pronounced for 2018 yet also valid for the entire 2010-2021 period. This may provide an explanation for

the RFM wind speed over-predictions compared to FINO3 and NORA3. As the RFM is trained using these higher collocated310

wind speeds the over-predictions may be related to the temporal sampling of ASCAT.
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(a) (b) (c) (d)

Figure 9. a) RFM mean wind profile for 2018 using the full dataset. b, c, d) RFM wind profile trained on a subset of 500, 2500 and 5000

random samples from the total dataset. Red dots represent FINO3 average wind measurements of the training dataset, black x’s represent the

mean FINO3 values for 2010-2021.

Figure 10. Number of hourly ASCAT observations (bars) at the FINO3 site for 2010-2021 (dark grey) and 2018 (light grey). Mean hourly

FINO3 wind speed at 107 m (lines), for 2010-2021 (dark grey) and 2018 (light grey).
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4 Discussion

This study used machine-learning methods for the extrapolation of ASCAT sea surface wind observations to higher atmo-

spheric levels. A random forest regressor model (RFM) was trained on the near-surface ASCAT wind observations along with

measurements of various atmospheric parameters to predict wind speeds at higher heights. The study area included the North315

and Baltic Seas, specifically the locations of the three FINO meteorological masts. For the assessment of the predicted datasets,

simulated winds from NEWA and NORA3 were used. In all occasions the RFM trained at the FINO3 site out-performed the

collocated NEWA WRF simulations compared to in situ measurements, with an RMSE of 1.23 m s−1, an improvement of over

35% compared to the NEWA WRF case. Results presented in this study indicate the RFM was able to predict mean winds with

a similar level of error as that of studies extrapolatinglow level winds to hub heights from met mast (Bodini and Optis, 2020),320

floating lidar systems (Optis et al., 2021) and with the addition of satellite data (de Montera et al., 2022).

NORA3 was selected for this study as it has been shown to represent the upper percentiles of wind speed much better than

ERA5 and the older hindcast NORA10 (Haakenstad et al., 2021). Solbrekke et al. (2021) validated NORA3 against ERA5

reanalysis data where both wind speed and direction observations from six offshore sites along the Norwegian continental

shelf show clear improvement over ERA5 data over both ocean and complex terrain when compared to observational wind325

speeds. Cheynet et al. (2022) also showed that NORA3 out-preformed the NEWA WRF dataset (Witha et al., 2019) in RMSE,

bias and R2 at the FINO1 met mast.

The discrepancies at heights above 51 m in RFM reconstructed wind profile may be related to atmospheric stratification, as

suggested in Optis et al. (2021), where differences between predictions under unstable versus stable conditions were shown.

From a similar analysis performed (not shown), results were in agreement with those in Optis et al. (2021), i.e. the RFM was330

able to capture the unstable profiles but over-predicted the wind profile at higher heights under stable conditions. The effects of

atmospheric stability are also encapsulated in the inclusion of air-sea temperature difference as a feature for the RFM training,

similar to Optis et al. (2021), which increases the RMSE by 20%. This is further emphasized when the satellite-based DMI

L4 SST product was used, specifically for the round-robin comparisons and the spatial extension of the model. In both cases,

comparisons with measurements from the met masts and NORA3 improved when the DMI L4 SST product was used.335

The impact of including the air-sea temperature difference is evident in the training process as it completely overshadows

the other atmospheric and temporal training features with the obvious exception of the satellite derived wind speed. Without

including the air-sea temperature difference there is a larger contribution from the SST and air temperature while including

it decreases the overall RMSE by over 20%. This was one of the main drivers for including the DMI L4 SST product to the

spatial extension of the RFM. The noticeable improvement of the model compared to NORA3 is evident in Figure 5a, where the340

spatial variability of the mean SST field is over 1 K from the east to west, suggesting that the use of a static water temperature

measurement at FINO3 is not ideal. However, wind speeds from predictions using the water temperature measurement and

assuming horizontal homogeneous FINO3 atmospheric measurements were lower by on average 0.5 m s−1 compared to

NORA3, see Figure 4d, suggesting that the assumption may still be valid offshore at these distances from the coastline.
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One parameter not considered in previous studies, e.g. Bodini and Optis (2020); Optis et al. (2021), was the length of the345

training period where it ranged from a few months to a few years of in-situ mast or lidar datasets, typically consisting of 10 min

measurements. This study uses a discrete subset of satellite wind retrievals and although it covers a longer period, the number

of available observations is smaller compared to 10 min datasets even if the latter extend over shorter periods. Therefore it was

considered important to evaluate the model trained over different periods of time. From results presented here, training statistics

converged when the sample size increased, reaching a plateau after approximately 2500 samples, suggesting this as a minimum350

number of samples to properly train a RFM when using satellite observations. This is consistent with findings from Barthelmie

and Pryor (2003) where 2000 satellite observations were considered sufficient to represent wind resource statistics. Given the

required data availability, only scatterometer winds were used to train the model. SAR winds have higher spatial resolution,

nonetheless their data availability is reduced due to a lower temporal sampling frequency (∼ 3 days). Nonetheless, for areas

were SAR winds offer a significant sampling coverage, it would be relevant in a future study to examine their applicability for355

training RFMs and extrapolating surface winds to higher atmospheric levels.

de Montera et al. (2022) addresses the sampling problem with the lack of SAR images (500 samples in their study) with

simulating satellite passes with WRF outputs. Similar to this, the RFM method could be applied with supplementary scat-

terometer data from other missions together with ASCAT. This is expected to provide more robust results from the RFM

method. Currently operating missions are HY-2B and HY-2C (Haiyang satellites) with the HSCAT scatterometer instrument360

onboard launched by the Chinese National Satellite Ocean Application Service (NSOAS) (Zhao et al. (2021)). The China-

France Oceanography Satellite CFOSAT satellite with a scatterometer launched by Centre National d’Etudes Spatiales (CNES)

and China National Space Administration (CNSA) is in operation. CFOSAT winds have been compared to buoy data (Zhu et al.

(2022)). The Indian Mini Satellite with SCATSAT-1 scatterometer onboard launched by Indian Space Research Organisation

(ISRO) is in operation (Misra et al. (2019)). Furthermore, archived data from past missions could be considered such as HY-2A365

from NSOAS, the ScatSat-1 satellite with the OSCAT scatterometer onboard launched by the ISRO (Wang et al. (2019)) and

the American QuikSCAT satellite with the SeaWinds scatterometer onboard launched by the National Aeronautics and Space

Administration (NASA). QuikSCAT observations have been used for wind resource mapping (Karagali et al. (2014)). Addi-

tional samples from other missions would increase the number of samples and would fill-in at other times of the diurnal cycle

thanks to different orbital paths than ASCAT.370

The features used in the machine-learning training process were selected based on their availability for applying the training

approach to floating lidar systems in deep-sea environments, since all atmospheric measurements are readily available on

current floating lidar systems or through satellite data. Offshore floating lidar systems only provide vertical wind measurements

at specific locations, similar to meteorological masts, therefore spatially extending such measurements using 2-d satellite wind

fields and machine-learning methods is of great interest.375

Nonetheless, the need for a large enough sample size of at least 2500 discrete observations may be a limiting factor as floating

lidar systems are typically deployed for periods of 1 to 2 years or less and would not yield the proposed number of collocated

observations with the current ASCAT instruments as can be seen in Figure 6. Ferry mounted lidar systems (Gottschall et al.,

2018) have been compared with ASCAT winds (Hatfield et al., 2022); they can also provide spatial sampling not achieved when
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measurement systems are moored at specific locations. Although the dataset used in Gottschall et al. (2018) covered a period380

of only 5 months, the concept involves mounting lidar systems on established ferry routes thus providing the opportunity

for longer time-series measurements over established paths. Having lidar systems alongside the corresponding atmospheric

sensors on already established ferry routes could provide long-term measurements in deep water areas suitable for training a

machine-learning model.

With the application of satellite wind retrievals in machine-learning predictions of long-term mean wind speed estimates,385

the discrete nature of the observations needs to be considered. For the time interval 18:00-21:00, when ASCAT has the highest

sample availability, shown by the bars in Figure 10, mean winds measured at FINO3 are higher compared to the rest of the day,

more pronounced for 2018, as seen in Figure 10 (lines). This suggests that the temporal dependence of sampling availability

may influence the RFM comparisons with NORA3 and in situ measurements at FINO3, especially when limited comparison

periods are considered (2018) as artefacts can be introduced because the trained dataset includes features and variability that390

are not necessarily present during the specific period of comparison. This can potentially explain the over-estimation of RFM

predicted winds compared to NORA3 and FINO3 measurements at all heights in Figures 4d and 5c. This is further supported

by results shown in Figure 9 where for profiles using lower sample sizes, as in 9a, an over-prediction of both the RFM (red

dashed line) and the F3 measurements (red dots) is found compared to the profile using all available measurements at FINO3

(crosses).395

Bodini and Optis (2020) outlined the importance of applying a round-robin approach when validating models trained in one

location to another. While using machine-learning models where hub-height relevant wind measurement are known may not

be of interest, extending those to the area surrounding the training site is of interest as it can provide a better description of the

ambient wind field. In this study, this approach was applied between the FINO1 and FINO3 met masts (as outlined in Table

6). In all cases, a model trained at FINO3 out-performed that at FINO1 in all evaluation metrics. The same result is seen in the400

comparisons with the NEWA data, see Table 5 and Witha et al. (2019), as well as with the NORA3 data, having an RMSE of

0.8 m s−1 at FINO3 and 1.3 m s−1 with FINO1 (Cheynet et al., 2022). This could be attributed to the proximity of FINO1 to

land (45 km) or the high density of wind farms. With a westerly-dominated wind direction and located directly in the BorWin

wind farms, the wind farm wakes could affect the wind speed measurements at 91 m, having no free stream wind profiles.

Extending the model spatially and evaluating the results with NORA3 in Figures 4 and 5 shows that including the satellite405

SST greatly improve the results. However, in both figures, the RFM was not able to fully reproduce the spatial wind structure

as shown in the NORA3 data (Figure 4c). Both figures show a resemblance to the ASCAT 10 m wind speeds (Figure 4) but

with a much narrower range of wind speeds (0.5 m s−1 and 0.3 m s−1 respectively), where the 10 m wind speed distribution

should not be entirely representative of that at 100 m especially in different atmospheric stability regimes. It can also be noticed

that in the ASCAT wind retrievals, in the WVCs enveloping the nearby wind farms, a slightly higher wind speed is observed.410

This can be attributed to higher reflection caused by the wind farms leading to higher wind retrievals. This can directly impact

the RFM as in both Figure 4d and 5c the highest wind speed difference with NORA3 is found in the bottom-right WVC, an

area with a wind farm and a higher wind speed at 10 m from ASCAT.
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5 Conclusions

The aim of this study was to explore the applicability of machine learning methods for training a model to extrapolate ocean415

surface wind measurements from satellites to higher atmospheric levels.

Using a random forest model approach it was possible to effectively recreate the vertical wind profile at FINO3 with only

slight over-predictions at the higher atmospheric levels, i.e. between 0.03-0.07 m s−1. A similar pattern was observed when

the model was extended over an area of 125 m2 surrounding the FINO3 mast. The RFM was found to over-predict the wind

speed when compared to the NORA3 re-analysis data over the same area, however including satellite-based SST retrievals over420

the entire area into the training dataset improved the agreement.

Special attention should be given to the training procedure when using observations with a limited daily temporal resolution,

e.g. 2-4 times per day, as training datasets, such as ASCAT. In those cases, over/under-prediction of the parameter of interest

compared to simulations or in situ measurements may result from the sampling of the original training dataset, regardless of

the number of samples used in the training process.425

Results from this study show the prospect of applying machine-learning methods for the purpose of extrapolating surface

winds to higher atmospheric levels. An interesting application of such methods is to datasets from offshore floating lidar

systems (floating lidar systems) specifically for their extension from point measurements to other locations within the area

of interest. Such applications would require the availability of measurements spanning at least 2-3 years with the concurrent

ASCAT daily coverage. Extending the period of coverage will not only benefit the available collocated measurements and thus430

the machine-learning statistics, but will also provide a more representative time period for wind resource assessment than the

typical 1 to 2 year time scales.
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